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The FDA is preparing guidance about using real-world evidence (RWE) to support decisions about product
effectiveness. Several ongoing efforts aim to replicate randomized clinical trial (RCT) results using RWE
with the intent of identifying circumstances and methods that provide valid evidence of drug effects. Lack
of agreement may not be due to faulty methods but rather to the challenges with emulating RCTs, dif-
ferences in healthcare settings and patient populations, differences in effect measures and data analysis,
bias, and/or the efficacy–effectiveness gap. In fact, for some decisions, RWE may lead to better under-
standing of how treatments work in usual care settings than a more constrained view from RCTs. Efforts
to reconcile the role and opportunities for generating complementary evidence from RWE and RCTs will
advance regulatory science.
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Background
Regulators and other decision makers have primarily relied on evidence from randomized clinical trials (RCTs) to
support drug effectiveness determinations. RCTs provide a straightforward and well-known approach to minimize
bias between treatment groups, as well as tightly controlled measurements to maximize data quality. These features
provide a priori confidence that the results from well-designed and executed RCTs will be causally interpretable [1].
In contrast, evidence generated from observational studies of real-world data (RWD) is often considered inferior
because nonrandom treatment assignment and less rigorous data collection may compromise internal validity,
making causal interpretation of results challenging [1]. Moreover, the results of observational studies evaluating a
treatment effect do not always agree with RCTs and these inconsistencies engender uncertainty and skepticism about
observational research. While we may always need RCT results, a possibility exists that for some decisions, real-
world evidence (RWE) can provide substantial evidence of treatment effect and may lead to a better understanding
of how a treatment works in usual care settings versus a more constrained view from RCTs.

The use of RWE to inform drug effectiveness decisions has been limited to the support of approvals in rare
diseases and oncology and the comparative effectiveness of preventative vaccines [2]. The FDA RWE Program
plans to evaluate observational study designs and issue guidance regarding whether and how they may generate
evidence to support decisions related to product effectiveness [2]. Evidence used to support product effectiveness
determinations needs to establish a causal relationship between product use and healthcare outcomes [2]. While
there is a considerable statistical literature on causal frameworks [3–6], standard and emerging methods for causal
inference [7–9] and methods for assessing assumptions for causal inference [10], significant challenges remain. The
Framework for US FDA’s RWE Program suggests that replications of RCTs using RWD may provide insights into
the opportunities and limitations of observational studies. Assessing the comparability of results between RCTs and
rigorously designed observational studies may shed light on the clinical scenarios, study designs, end points and
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statistical methods that lead to comparable results, increasing confidence that these types of studies can provide
reliable evidence of drug effect. In this paper we explore the issues of RCTs versus RWE replication, including
clinical and statistical reasons for potential differences in results and recommendations for future efforts.

Current efforts to reconcile the role of RWE as a complement to RCT
There are several ongoing efforts that aim to replicate the results of RCTs using rigorously designed and analyzed
observational studies. The results of these efforts are likely to receive considerable attention from both advocates and
critics of RWE and to raise additional questions. The most prominent effort is RCT DUPLICATE, a collaboration
between FDA, Brigham and Women’s Hospital and Harvard Medical School Division of Pharmacoepidemiology, to
replicate 30 completed Phase III or IV trials and to predict the results of seven ongoing Phase IV trials using Medicare
and commercial claims data [11]. The Multi-Regional Clinical Trials Center and OptumLabs are leading another
effort called Observational Patient Evidence for Regulatory Approval and Understanding Disease (OPERAND) [12].
They have funded Brown University and Harvard Pilgrim Health Care Institute to replicate the ROCKET-AF trial
for atrial fibrillation and the LEAD-2 trial for Type 2 diabetes control using claims from commercial and Medicare
Advantage plans and electronic medical record data from OptumLabs Data Warehouse. Finally, FDA has funded
the Yale University-Mayo Clinic Center of Excellence in Regulatory Science and Innovation to predict the results
of three to four ongoing safety trials using OptumLabs claims data [13].

These replication efforts will evaluate comparability of RCT and observational study results based on prespecified
measures of agreement – regulatory agreement and estimate agreement [14]. Regulatory agreement indicates that
the observational study replicates the direction and statistical significance of the RCT and the conclusions drawn
(including decisions made) would be same [14]. Estimate agreement means that the effect estimate from the
observational study lies within the 95% CI for the treatment effect from the RCT [14]. The selection of the
metrics used to assess agreement matters when judging the success of these replication exercises and determining
implications regarding confidence in future observational studies. Regulatory agreement seems most relevant when
considering the application of observational study results to support future regulatory decisions. RCT DUPLICATE
investigators expect the probability of regulatory agreement in the absence of bias to be in the 80–90% range for
trials showing significant effects. For trials that failed to find significant effects, the expected probability of regulatory
agreement is 95% for truly negative trials and <20% for false negative trials [14]. However, investigators have not
prespecified an a priori expectation of regulatory agreement for the overall set of 30 studies. Such a quantification
of the expected value of agreement statistic may be helpful when evaluating the results of these exercises and could
be set by considering how well RCTs replicate each other according to these agreement measures.

The purpose of these replication exercises is to identify the clinical scenarios (e.g., indications and outcomes),
study designs and analytic approaches that lend themselves to valid study implementation with RWD. The premise
is that developing such an empirical evidence base will enable regulators to appraise with greater confidence when
observational studies may be used to support regulatory decision making [14,15]. When considering these replication
efforts, several questions arise for relevant stakeholders and the scientific community. For example, why do some
observational studies fail to replicate the effect from the RCT while others succeed? [14] When will there be sufficient
empirical evidence to predict with high certainty the validity of an observational study of treatment effectiveness?

Interpreting replication results & recommendations
Even with rigorously designed observational studies intended to mimic the target RCTs, some variation in results
should be expected. There are valid reasons for why RCTs and observational studies may not agree and it is
important to consider possible reasons in the context of these replication exercises. While agreement between RCTs
and observational studies may be interpreted as strengthening support for the causal relationship, the absence of
concurrence does not mean one approach or the other is wrong. Previous comparisons of observational studies and
RCTs have primarily attributed discrepancies in results to bias and confounding in the treatment effect estimates
from the observational studies [16]. However, other factors also may be responsible, such as challenges with emulating
the target RCT, differences in healthcare settings, inclusion of more vulnerable or diverse patients, differences in
effect measures and data analysis and the efficacy-effectiveness gap. It is worth noting that even highly cited RCTs
have been later contradicted, [17] and the reasons for failure to replicate can shed insight on the design and validity
of RCTs themselves.
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Differences in patient populations, end point measurement & calendar time
Despite efforts to approximate and apply the eligibility criteria from the RCT, important differences may remain
between patient populations in the target RCT and the observational study. First, it can be challenging to apply
trial eligibility criteria to real-world data sources and criteria that involve clinical data or physiological measure-
ments will not be measurable in administrative claims data, or even in electronic medical records [18]. Even after
applying similar eligibility criteria, there may be differences between the RCT and real-world populations in the
underlying distributions of baseline patient characteristics, such as age or prevalence of comorbid conditions. RCT
DUPLICATE researchers made the decision not to reweight the real-world populations to match the reference
RCT population in primary analyses; however, this approach may be explored in sensitivity analyses. It is possible
that the patient populations from which the real-world study samples are drawn (e.g., Medicare and commercial
claims databases) may have different baseline risks for the primary outcome compared with the RCT patients or
even to each other, as observed in a recent database study predicting the results of the CAROLINA trial [19]. The
distributions of treatment effect modifiers also might differ between the RCT and real-world population, or there
may be heterogeneity of treatment effect based on population variables that may be unknown or unaccounted for
in each dataset. Finally, geographic differences need to be considered. Most pivotal, registrational RCTs are global
studies and patients from the USA represent a subset of the overall study population. Replication efforts based on
US data only should conduct sensitivity analyses to compare results to the treatment effect estimates for US trial
patient subgroups where possible.

Differences in end point measurement also may impact agreement. The outcome definitions and severity of
events that are captured in RCTs may differ from those used in observational studies based on secondary data,
meaning that the end points could represent somewhat different concepts. Claims-based studies require rules or
algorithms to identify cohorts, exposures and outcomes events. This speaks to the desirability of using validated
algorithms with known operating characteristics in RWE studies. The capture of outcome events may only occur
for events that required medical care or were queried about during a medical encounter. The surveillance periods,
duration of follow-up and timing of end point measurement may differ as well. Trials evaluate end points at
protocol-specified time intervals, while in clinical practice patients are monitored according to usual care, which
varies across practices, health systems and regions and it is not possible to determine the intent of observed tests
and procedures (e.g., routine surveillance vs suspicion of disease).

Finally, there may be calendar time differences. In some cases, the observational study will require a later time
period than the corresponding pivotal Phase III RCT because the drug was either not yet on the market or only
used off-label at the time the RCT was conducted. Improvements in clinical practice and changes in the treatment
landscape or patient population may occur over time, which can impact treatment effect estimates.

Differences in data analysis & effect measures
When comparing treatment effect estimates from the RCTs and observational studies, it is important to consider
differences in data analysis and the causal effect measures under study. RCTs typically conduct intent-to-treat
analysis based on how patients were randomly assigned into treatment groups, whereas observational studies group
patients into treatment groups based on what was observed (as used) rather than what was intended (intent to treat)
and conduct the observational analog of a ‘per protocol’ analysis [20]. Direct comparisons of effect estimates between
RCTs and observational studies may require reanalysis of the RCT data to estimate the per-protocol effect and make
adjustments for adherence and loss to follow-up [20]. Patterns of intercurrent events such as treatment adherence,
dose changes, and treatment augmentation or switching are expected to vary between RCTs and RWD. In an RCT,
the study protocol defines rules for treatment changes and adherence is closely monitored, while in clinical practice
there is less oversight of patients and much greater variability in treatment changes and the influence of other
factors, such as cost or insurance coverage and social determinants of health. RCT DUPLICATE investigators plan
to censor patients when they discontinue the study treatment or switch treatments [14]. It is not clear what other
approaches may be used to address ITT versus per-protocol analysis or account for treatment changes during the
follow-up period in the observational studies, but this issue highlights the potential complementarity of RCTs and
RWD.

Bias & confounding
It is well known that observational studies may be affected by bias and unmeasured confounding. Real-world data
sources are often missing key sociodemographic and clinical variables that may confound the treatment-outcome
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relationship. There may be channeling bias related to patient, physician and healthcare system factors influencing
prescribing and use of a newly approved drug [21] or other biases known to harm the internal validity of observational
studies, such as confounding by indication, confounding by frailty and the healthy user effect [22]. There also may
be misclassification or measurement error in the exposure and baseline predictors or covariates that can impact the
estimation of treatment effects and alter their interpretation [23].

None of these issues have a simple or guaranteed solution that can offer the reassurance provided by randomiza-
tion. Comparative analyses based on observational data are challenging. Standard bias control methods rely on the
assumption of no unmeasured confounding, which may be untenable in many observational studies of treatment
effectiveness. However, one is not without some recourse. The literature is rich with methods and evaluations of
methods for adjusting for confounders, such as the use of matching, stratification, weighting and regression-based
methods often through use of the propensity score [4,7,8,24–27]. Emerging methods such as doubly robust approaches,
double matching (propensity and prognostic scores) and even machine learning approaches such as model averaging
may provide improved estimators of treatment effects [28–31]. Recent review papers are emphasizing the use of an
expanding toolkit of sensitivity analysis methods to assess the potential impact of unmeasured confounding [32–35].
It is expected that competent researchers will avoid common study design flaws [1] and apply accepted methods to
adjust for measured confounding, as well as more novel methods to address unmeasured confounding. It is critical
to conduct extensive sensitivity analyses where researchers diligently seek and include all factors that can address
any underlying bias or confounding.

The impact of known but unmeasured confounding and measurement error could be minimized even further by
the selection of real-world data sources that are ‘fit for purpose’ for replicating the treatment effect from the RCT.
The decision to use claims data for the RCT DUPLICATE project was logistical rather than scientific. It is likely
that for some RCTs, administrative claims data alone will be insufficient to support replication since it may not be
able to match the inclusion or exclusion criteria or have the necessary variables to adequately find and correct the
bias or confounding. Linkage with laboratory data or electronic health records data may be necessary to provide
richer information. If linking is not possible, then replication in different types of real-world data sources may be
helpful.

Efficacy–effectiveness gap
The efficacy–effectiveness gap refers to the longstanding observation that products perform differently in clinical
practice than in RCTs. There is considerable literature on this topic [36], but it has not been directly addressed in
recent discussions on replications of RCTs using RWD. Imperfections of the healthcare system and delivery of care
may contribute to differences in outcomes between RCTs and observational studies [36]. In routine practice, there are
barriers to accessing healthcare resources, variability in testing, diagnosis, and treatment, and physician behavior and
patient adherence are not optimal [36]. True differences in outcomes may be expected between highly protocolized
care of RCTs and usual care in real-world settings. The efficacy–effectiveness gap may also be the result of complex
interactions between the drug’s biologic effects and patient, provider and healthcare-related factors [36]. While the
methodological considerations discussed earlier in this paper may partially explain the efficacy–effectiveness gap, it
is also possible that observational study results represent part of a continuum of truth about a treatment effect.

Recommendations
Disagreement in results of these RCT replication efforts could be evidence of challenges with emulating the target
trials using RWD, differences in the data analysis and effect measures, bias or confounding in the observational
study, or the efficacy–effectiveness gap. It is likely that all these factors will contribute in some way to any observed
discrepancies in effect estimates. Arguably, the most important work will involve disentangling the reasons for
differences to understand the results of the exercises and the implications for confidence in the internal validity
of observational studies. A recent paper by the lead investigators of RCT DUPLICATE considers the potential
challenges in emulating a target trial with RWD and provides a list of measures of emulation differences related
to study populations, treatment strategies and outcomes (e.g., proportion of patients with labs available and the
length of follow-up in RWE vs RCT) that are observable [37]. These measures, along with targeted sensitivity
analyses, may help investigators understand the potential impact of emulation differences between the RCT and
the RWE replication. Lodi and colleagues [20] describe a systematic approach to improve the comparison of effect
estimates from RCTs and observational studies based on RWD, based on harmonization of study protocols and
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data analysis to target the same causal effect and the same estimand and sensitivity analyses to investigate remaining
discrepancies.

We encourage other researchers to build upon the foundation of current RCT replication efforts and conduct
and publish similar replication exercises in additional therapeutic classes, with careful consideration of data and
methods in the context of fitness for purpose, with attention to describing agreement and when results are
discrepant, to identifying potential explanations for differences. We recommend that future efforts are expanded
to include not only health insurance claims but also electronic health records data, registries, linked data sources
and other clinically rich data sources. It would be most useful to focus on clinical and regulatory contexts where
observational studies could demonstrate substantial evidence of treatment effect to support product effectiveness
determinations and labeling changes, especially since this is an important goal identified in the 21st Century Cures
Act. While FDA has accepted observational studies to support effectiveness determinations in limited instances
in the past, there are a growing number of therapeutic areas where there appears to be an acceptable level of risk,
particularly in oncology, in which observational studies may provide primary or supportive evidence sufficient for
a label change. These may include long-term effectiveness within an already approved indication, additional claims
or end points within an approved indication, changes in the combination therapy, or changes in the indicated
patient population. Finally, it will be important to consider other approaches, in addition to RCT replication
efforts, to address FDA concerns regarding establishing causality with observational studies, for example, the
application of methods to address unmeasured confounding and work to advance methodological and statistical
approaches to support causal conclusions. There is a growing literature on causal frameworks and causal estimation
in observational studies; however, there is more work to be done to develop and evaluate novel statistical approaches
and to advance regulatory understanding and confidence in observational studies of treatment effectiveness. Just
as the requirements for an acceptable RCT have become recognized and codified, it will be necessary to develop
consensus on the characteristics of high-quality observational research that could meet the standard of an ‘adequate
and well-controlled investigation’ in order for these studies to rise to the level of substantial evidence [38,39].

Conclusion
RCTs and RWE are complementary and each contribute valuable information about patient outcomes. The gains
from the use of observational studies to support regulatory decisions could be considerable. Efforts to replicate
RCTs can support the credibility of observational studies for estimating treatment effectiveness by demonstrating
that they can support the same regulatory decision or causal conclusion as RCTs when the clinical setting is carefully
chosen, appropriate data are selected and best practices for design and analysis are followed. However, careful review
and interpretation of the results will be critical, particularly if there are discrepancies between the target RCT and
the observational study. The conclusion should not be that the observational study was flawed or confounded [40].
The learning achieved through investigating the reasons for differences may improve our understanding of when
trustworthy causal inferences can be made from observational data but may also provide insights on how better
to design RCTs to improve their generalizability and usefulness in decision-making. Efforts to reconcile the role
and opportunities for generating complementary evidence from RWE and RCTs will not only advance regulatory
science but also progress the learning healthcare system. The replication of RCTs is not an end goal but rather
an intermediate step on the way to making statements or hypotheses about the efficacy–effectiveness gap, optimal
use of medical products in real-world settings, heterogeneity of treatment effect in various subpopulations, and
long-term outcomes. These are complementary insights RWE is uniquely positioned to provide.

Future perspective
FDA guidance regarding whether and how observational study designs may generate evidence to support decisions
related to product effectiveness is expected by the end of 2021. Rigorously designed and conducted observational
studies may offer valuable information that complements evidence from clinical trials. RCT replication efforts,
advances in statistical approaches to causal estimation of treatments effects and experience with using RWE may
increase regulator understanding and confidence in observational studies of treatment effectiveness. In 5–10 years
from now, we expect that observational study designs will be used often to provide evidence of product effectiveness
to support label changes in appropriate regulatory and clinical circumstances.
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Executive summary

Background
• The use of observational studies to inform drug effectiveness decisions has been limited in the past, primarily due

challenges with causal inference.
• Replications of randomized clinical trials (RCTs) using real-world data may provide insights into the opportunities

and limitations of observational studies for regulatory decision making.
Current efforts to reconcile the role of real-world evidence as a complement to RCT
• Several ongoing efforts aim to replicate the results of RCTs using rigorously designed and analyzed observational

studies.
• Comparability will be evaluated based on prespecified measures of agreement: regulatory agreement and

estimate agreement.
• The purpose of these efforts is to identify clinical scenarios, data sources, study designs and analytic approaches

that provide reliable evidence of drug effect.
Interpreting replication results & recommendations
• Discrepancies in results between RCTs and observational studies should be expected and it is valuable to carefully

consider possible reasons.
• Factors that may contribute to disagreement in results include: challenges with emulating the target RCT,

differences in healthcare settings, differences in study populations and end point measurement, differences in
effect measures and statistical analysis, the efficacy–effectiveness gap, and bias or confounding.

• The most challenging and informative task of these replication efforts will be to disentangle these potential
reasons in order to understand the implications for confidence in observational studies.

• Future work should include clinically rich data sources and focus on clinical and regulatory contexts where
observational studies could support labeling changes.

Conclusion
• RCTs and observational studies provide valuable, complementary information about patient outcomes. The gains

from the use of observational studies to support regulatory decisions could be considerable.
• Careful review of the results of these replication efforts will be critical. The learning achieved may improve

understanding of when trustworthy causal inferences can be made from observational studies.
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Health Technology Assessment (HTA) bodies are increasingly presented with submissions containing nonrandom-
ized measures of treatment effect, including real-world evidence. The consideration of such evidence has been
hampered by uncertainty surrounding the potential impact of unmeasured confounding – often leading to such
data being disregarded in the decision-making process. Methods to quantitatively explore the potential impact of
unmeasured confounding on estimated treatment effects exist and offer potential to support the use of nonrandom-
ized data in HTA. This article provides an overview of these methods, highlights their underutilization in HTA
and considers the steps that would be required to increase their use in this field.

Nonrandomized measures of treatment effect are increasingly being submitted to HTA bodies in the form
of unanchored indirect treatment comparisons and real-world evidence (RWE) of comparative effectiveness. It
is well known that the key issue with such evidence is the potential for unmeasured confounding to bias the
effects observed. That is, as treatment allocation is not randomized, individuals receiving different treatments may
systematically differ in ways that impact their risk of the outcome(s) under study, thereby biasing comparisons of
these groups. Where these factors have been measured, confounding can be accounted for through appropriate study
design and analysis. However real-world data sources are often not fit for purpose in this regard, lacking complete,
high-quality measurements of all important confounders. As a result, when faced with these data, HTA bodies
commonly provide qualitative descriptions of their concerns regarding the uncertainty unmeasured confounding
introduces into the decision-making process and highlight concerns about the extent to which this complicates the
interpretation of quantitative assessments of clinical and cost–effectiveness. In many cases the uncertainty raised
can contribute to negative decisions regarding reimbursement, thereby impacting patient access to potentially
cost-effective treatments.

In a field in which the quantitative synthesis of diverse data to inform decision-making is commonplace, the
limited discussion of quantitative methods to explore the issue of unmeasured confounding in HTA submissions is
surprising. For example, in their very useful guidelines regarding ‘the use of observational data to inform estimates
of treatment effectiveness in technology appraisal’ and ‘methods for population-adjusted indirect comparisons
in submissions with NICE’ the NICE Decision Support Unit gives very limited advice about how to address
unmeasured confounding quantitatively, highlighting this as an area for future research [1,2]. In Germany, IQWIG’s
methods guidance allows for the consideration of treatment effects from nonrandomized studies where ‘dramatic
effects’ are observed, citing a relative risk of greater than 10 and statistical significance at the 1% level as an effect
broadly in a range dramatic enough to be unlikely to be due to unmeasured confounding. However, IQWIG state
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that this is not a rigid threshold and provide little further guidance on this topic [3]. The concept of ‘dramatic
effects’ appears more readily acceptable for decision-making by the German Federal Joint Committee (G-BA) than
statistical adjustment methods. An analysis of past dossiers showed that, based on the argument of ‘dramatic effects’,
G-BA accepted a larger proportion of unadjusted (naive) comparisons than adjusted indirect comparisons [4]. The
lack of specific guidance on approaches to quantitatively explore unmeasured confounding is not limited to the
UK and German guidelines [5–8].

The lack of consideration given to this area is particularly notable given that approaches to quantify the
potential impact of hypothetical unmeasured confounders exist and have been under development in the field of
(pharmaco)epidemiology for decades. Multiple potential approaches have been proposed over this time period,
however the majority of them represent variations on a similar approach in which one assesses the impact of
a suspected or hypothetical unmeasured confounder on the results observed [9]. The approaches proposed have
differed in several ways. Some used external data from another source to define the strength of a suspected
confounder, some assessed the impact of confounders of different strengths on the treatment effect, and still others
focused on identifying the minimum strength of a confounder required to adjust an observed treatment effect to the
null [9–11]. Analytic approaches have also varied. Some being deterministic, others probabilistic, some implemented
in a frequentist, others in a Bayesian framework [9,12,13]. In terms of the types of treatment effects, confounders
and outcomes, methods have been developed (among others) for relative risks, odds ratios, risk differences and
hypothetical binary and continuous confounders [9,11,13,14]. Similar ideas have also been proposed in other areas of
evidence synthesis research, quantifying for example the (hypothetical) level of bias needed to change a treatment
recommendation resulting from a network meta-analysis [15].

As an example of how these types of methods work, we use two of the most simple approaches mentioned above
to illustrate the potential impact of unmeasured confounding in a nonrandomized study comparing the overall
survival of anaplastic lymphoma kinase-positive non-small-cell lung cancer patients who received alectinib with
those who received ceritinib [16]. In the study, single-arm trial data on alectinib treated patients were compared
against real-world data on ceritinib treated patients from an electronic health record database. A doubly robust
approach was used to account for measured confounders resulting in an adjusted hazard ratio of 0.65 (CI: 95%
0.48–0.88). In the discussion, the authors noted that unmeasured confounding may be an issue, for example, due
to the absence of complete information on a key prognostic score in the electronic health record database. Since
these sensitivity analysis methods are typically applied on the relative risk scale, the first step in applying them is to
approximate the adjusted risk ratio (ARR) using the square-root transformation [17]. Applying the transformation
to the hazard ratio (HR), we obtain an estimated ARR of 0.74. To then apply the array approach described in [9],
one could assume that the prevalence of a hypothetical confounder in the unexposed group is 0.2 (20%), then for
varying strengths of association between the hypothetical confounder and the disease outcomes and prevalence of
the confounder in the exposed group, a fully adjusted exposure RR can be estimated (Figure 1). Additionally, the
E-value as described in [11] can be calculated as, E-value = ARR∗ + √

ARR∗ × (ARR∗ − 1), where ARR∗ = 1/ARR
since ARR <1. In this example, the E-value is 2.03.This means that to explain away the ARR of 0.74 there would
need to be an unmeasured confounder associated with at least 2.03-times the risk of both mortality and alectinib
treatment, above and beyond the measured covariates [11]. Notably, one could also carry out the same procedures
on the upper or lower bound of the CI [11].

Given the existence of these methods, the question that begs is where the hurdles lie in implementing them
in existing HTA frameworks? Programmatically, operationalizing the tools should not be a major hurdle. Those
HTA bodies whose decisions are based on relative effectiveness assessments could utilize one of the existing tools
discussed above to pressure-test the nonrandomized measures of relative effect presented to them to an extent they are
comfortable with. Those HTA bodies that use cost–effectiveness frameworks could use a similar approach or could
potentially look to build the probabilistic or Bayesian sensitivity analysis approaches, mentioned above, directly
into the probabilistic sensitivity analysis already found in most cost–effectiveness models submitted to HTA bodies.
This would allow for the uncertainty due to unmeasured confounding to be captured alongside all of the other
sources of uncertainty thereby fitting with the current decision-making framework. Some additional work may
be required to ensure the outcome types typically encountered in HTA submissions can be adjusted using the
appropriate methods but given the stage of development of the methodological field, one would not expect this to
be an issue.

It appears that the bigger hurdle may be in setting out the framework required to govern how to parametrize the
chosen tools, that is, providing answers to questions along the lines of how big of a confounder can be considered
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Figure 1. Fully adjusted relative risk (RRadjusted) surface (A) and percentage of bias surface (B) as a function of the strength of
association between a confounder and mortality (RRCD) and the prevalence of the confounder in the alectinib treated group PC1 using
the array approach.

‘unrealistic’ or ‘unlikely’? Should this be determined on an assessment-specific basis, an indication-specific basis or
overall for all submissions? Should there be an onus on manufacturers to capture data from external sources in order
to better inform the parameters of these analyses? Should there be an onus on the HTA bodies side to have their
clinical experts determine the parameters of these sensitivity analyses? If the latter, how should expert elicitation
best be carried out in practice?

Answering these questions will require careful thought on the part of multiple stakeholders and likely some sort
of consultation process, however we believe that any reimbursement body committed to utilizing single-arm data
and/or RWE to accelerate patient access to therapy needs to find a way to align on these questions. This may
require a programme of work focused on reviewing and publicizing the tools available to quantitatively explore
unmeasured confounding to the HTA audience, as we seek to begin to do with this article, and carrying out any
additional methodological and conceptual work required to allow for their incorporation into decision-making
frameworks. Given recent initiatives by a number of HTA bodies to better consider the potential use of RWE for
HTA, now may be a pertinent time for greater focus on this area [18–22].
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The threat of COVID-19 has led to an unprecedented level of cooperation among academia, industry, policy
makers and public health officials to find ways to diagnose, prevent and cure the condition. Although key work
is interventional trials testing vaccines and treatments, observational studies (or real-world evidence [RWE]) have
proved valuable in aiding decision-making [1–4]. Awareness of how RWE is generated, its limitations and the biases
presented that need to be addressed using statistical methods to gain meaningful insights, is now commonplace
and should not impede its use and acceptance [5]. The research activities related to COVID-19 should hopefully
help end the often unproductive debate about the superiority of randomized clinical trials over RWE [6].

Analogizing to the 2008 global financial crisis, which negatively impacted individual health and access to care
and forced changes to service provision in budget constrained healthcare systems [7,8], we will likely observe material
changes after the pandemic is over. What is different about this shock to our lives and economies is the substantially
greater existence of data and the ability to process this in vast quantities.

Data-enabled decision-making has the potential to offer significant benefits to patients, health systems and society
as a whole; however, in order to fully capitalize on this, more data need to be made available. Imagine if full medical
records were available on people worldwide, in real time, potentially also linked to their social media and wearable
technology accounts. If used for research purposes (complying with all privacy and legal guidance) this could have
meaningfully assisted efforts to build predictive models for COVID-19 and associated complications [9] and to aid
flattening of the COVID-19 transmission curve, translating to extensive global health and economic gains.

How could more data help after the COVID-19 pandemic? Cancer is a highly relevant example where there are
high unmet needs and limited data available. A survey of over 4000 cancer patients in more than ten countries
by All. Can [10], found that there were often delays in disease diagnosis, inefficiencies in cancer management and
that the disease caused considerable financial challenges for sufferers through loss of earnings. It is likely that these
findings can be extrapolated to some extent to other diseases. Less fragmented data can help in all aspects of the
patient journey, with the ultimate goal of improving patient (and caregiver) holistic well-being (physically, mentally
and financially) and concomitantly reducing burden and cost to healthcare systems.

New methods can help convert data to insight; artificial intelligence techniques have already been shown to
assist on cancer image data to improve diagnosis [11]. With prospective validation of these techniques with imaging
data directly from the clinic, deployment of these systems could reduce strain on the healthcare workforce and
ensure high-risk patients are rapidly followed up. Although precision medicine is currently most applicable to
oncology, where genomically targeted therapy can lead to better clinical outcomes [12], medicine can become more
personalized and more efficient with more complete and less fragmented data. Actionable information such as
quality of life data are important and whether this is tracked using wearables, social media or via self-monitoring
apps [13,14], it can empower both patients and healthcare practitioners to address any deterioration in symptoms
that otherwise may escape detection in between routine clinical visits. Improvement of patient outcomes potentially
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not only enables them (and their caregivers) to carry on working, which has a positive societal impact, it also lessens
healthcare resource use.

The need to develop new medicines remains, despite most attention being placed on healthcare interventions
to support ending the COVID-19 pandemic. Real world data can provide supportive information to help with
designing (e.g., defining appropriate [potentially digital and more patient-centric] end points to use) and interpreting
(e.g., understanding generalizability of trial populations) randomized clinical trials. Real world data can also be
used to act as a comparator when it is difficult or unethical to run a placebo-controlled study. All of these efforts can
assist in bringing patients faster access to medicines and ultimately improving their lives and bettering society in
general. While the health and financial advantages of more data availability are tangible, there are nevertheless data
privacy, quality, fragmentation, infrastructure and logistical challenges that need to be surmounted [15–17]. However,
COVID-19 has shown that when a crisis hits, we all can work together and commit to a greater good. Perhaps
this is an opportunity that the pandemic is affording us: putting things in place now to improve health and wealth
outcomes for all and limit future healthcare emergencies.
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A rare opportunity
As health systems find themselves under increasing pressure, the pharmaceutical industry has a unique opportunity
to broaden the very basis of their engagement with health systems beyond predominantly one-dimensional rela-
tionships focused on access to innovative treatments. Instead, the pharmaceutical industry can look to build trusted
partnerships around a common purpose of supporting the delivery of better patient outcomes through application
of data-driven insights to improve treatment and care pathways, to advance medical practice and to optimize the
utilization of healthcare resources.

The term real world data (RWD) describes data that are routinely collected within health systems on a patient’s
health status, in a purely observational fashion. RWD has the potential to play a critical role in establishing trusted
partnerships: its very origin from within health systems, makes RWD particularly suited for generating evidence
in a transparent and objective way through collaborations. As such, the generation of RWD can help foster trust
and support new research partnerships that build a shared understanding around the intent of collecting data, the
purpose this will serve, which trade-off decisions the data will inform and the value such partnerships offer to each
party.
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The emergence of interdependencies
The traditional relationships between the pharmaceutical industry and healthcare systems are being fundamentally
re-defined, by moving beyond typical transactional roles as seller and buyer, respectively.

As health systems struggle under increasing financial pressures, engagement on the sole basis of providing
innovative treatments for payment makes it difficult for both parties to reconcile conflicting priorities. Establishing
long-term, trust-based partnerships around broad, shared objectives such as aligning treatment around optimal
patient outcomes, enables health systems and the pharmaceutical industry to solve problems jointly.

Health systems and the pharmaceutical industry recognize the value of evidence and insight generated by RWD:
alongside governments, the pharmaceutical industry has fueled an increasingly rich RWD landscape, as some health
systems lack the expertise or resources to generate insight from those data assets themselves.

Research-focused partnerships transcend the traditional monetization of data and aim to solve the challenge of
sustainable innovation for better patient outcomes. However, in order to build these partnerships, trust must be
established between both parties.

The value of trusted partnerships
The defining feature of trusted partnerships is the long-term pursuit of mutually beneficial objectives, in a transparent
way, by combining complementary assets, resources and capabilities. As the home of deep scientific, clinical and
analytical expertise, with an ability to draw on significant resources, the pharmaceutical industry has a lot to
contribute to establish trust-based partnerships. In the case of trusted partnerships between health systems and
the pharmaceutical industry, this common ground can be found at the intersection of innovation, efficiency and
patient outcomes, with RWD facilitating transparency, objectivity and stakeholder engagement:

• Patient outcomes: achieving better patient outcomes in the real world is the ultimate prize for trusted partnerships
between health systems and the pharmaceutical industry. At the very heart of this lies the optimization of treatment
and care pathways;

• Innovation: long-term collaborations as part of a network of relationships, instead of one-off studies, can facilitate
the build out of novel RWD infrastructure, which drives unique insights to advance medical practice;

• Efficiency: improving the operational performance of healthcare systems is a major driver of mutual benefit in
trusted partnerships. Efficiency gains help to ensure the sustainable delivery of high-quality care and unlock
funds for broadening patient access to cutting edge innovation.

However, there are important considerations for defining the common ground between health systems and the
pharmaceutical industry, specifically, the issue of scale of such partnerships. We believe two complimentary modes
of working should be considered:

• Scaling up from local pilots: establishing exemplars of best practice, by demonstrating the art of the possible
locally first, for example, by partnering directly with one to two centers, and then transferring learnings across
the wider health system;

• Driving structural change at (inter-)national level: partnering with national and international bodies, including
regulators and payers, to drive change, for example, by furthering methodology and data standards.

Crucially, to reap the full benefits from optimizing along the dimensions of innovation, efficiency and patient
outcomes, learning healthcare systems [1] need to embrace a virtuous cycle of continuous improvement and be open
to international best practice sharing. While healthcare systems operate predominantly locally, the pharmaceutical
industry with its global reach is well placed to facilitate such exchange of learnings across countries.

Implications for partnership models: from transactional to relationship building
Historically, many collaborations between healthcare systems and the pharmaceutical industry tended to be transient
in nature and only on a need-to basis, with short-term funding and engagement commitments, and therefore they do
not always support a long-term and sustainable, mutually beneficial partnership model. Short-term focus represents
a major barrier to unlocking the unique value of novel RWD assets. Lead times of 5 years or more are common
for such novel RWD assets to reach the requisite data volumes and levels of data maturity needed for high-quality
evidence generation, well beyond the typical initial 2-year sourcing and curation period to secure data access; hence,
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the importance of establishing long-term relationships that enable the sustainable collection of RWD by healthcare
systems.

To move to trust-based partnerships, new models are required that ensure long-term commitment, transparency
and joint ownership of insights, all in full compliance with data privacy requirements and ethical standards. Recog-
nizing the need for combining the best available data from all partners to solve a common problem is a key factor
for successful collaborations, such as public–private partnership projects [2,3], multi-stakeholder collaborations [4,5]

or single company-led, multi-stakeholder collaborations [6–8].

Requirements for successful trusted partnership models
For trust-based partnership models to succeed, several barriers need to be overcome which requires a concerted,
multi-stakeholder effort. Specifically, the following agreements and clarifications are needed from healthcare sys-
tems:

• Alignment on the rules and models for access and contribution to data:
• Clarification of the value of improving the quality of healthcare data in the pursuit of delivering better patient

outcomes, and communicate said value to patients in order to encourage sharing of their data for research
purposes;

• Clarification of ‘research’ definition to facilitate data sharing under preferential General Data Protection
Regulation (GDPR) or Health Insurance Portability and Accountability Act (HIPAA) requirements;

• Streamlined approval processes, for example, pre-agreed study archetypes, standard operating procedures
(SOPs) for standard research approaches;

• Accelerated approval of data linkage.
• Alignment on fit-for-purpose methodologies and suitability of data sources:

• Clarification of how to control for bias, beyond solely relying on randomization;
• Clarification of suitable data sources for assessing clinical effectiveness and safety, especially when relying on

disease-specific intermediate outcomes rather than typically well documented final outcomes such as death.
• Alignment on governance and transparency, as pre-requisites for data access and patient advocacy:

• Agreement on ethical redlines for research;
• Agreement on the principles of assignment of responsibilities;
• Agreement on ownership and acceptable use of deliverables, including publication rights.

Health systems, and patients, have much to gain from adopting those changes in order to facilitate trust-based
partnerships with the pharmaceutical industry and to reap the full benefits they have to offer.

Commitment by the pharmaceutical industry
To create momentum in advancing the trusted partnership agenda, the authors of this commentary endorse the
following principles. They have been designed to ensure fairness, transparency and, ultimately, maximize the value
of such partnerships to healthcare.

• Responsible use of health data: we believe that health data should be handled responsibly, in adherence to
data privacy and ethical standards. Where laws and regulations allow the re-use of health data for research
purposes without specific consent, (for example, to promote public health), we believe that industry, academia
and legislators have the joint responsibility to educate individuals and society about the significant benefits of
appropriate data re-use. Individuals should have transparency over the use of their personal health data, therefore
we are committed to publication of all studies evaluating the effectiveness and safety of interventions in public
registries and timely publication of study results, ideally in peer-reviewed scientific journals;

• Balancing stakeholder interests: we believe that the digital age will transform many aspects of biomedical research,
clinical practice and healthcare systems. To harvest the full benefit of these developments for patients and society,
a balance must be struck between the individual’s privacy rights, interests and autonomy over the use of their
personal health data and the broader societal gains in obtaining new knowledge and advancing medicines.
As perceptions on aspects of these debates vary broadly not only from country to country, but also between
generations, this requires a long-term, inclusive societal debate. We are committed to be a transparent, pro-active
stakeholder in this discourse, and we will publicly share our views on key aspects of the discussion;

future science group www.futuremedicine.com 157



White Paper Seewald, Plumb, Gutierrez et al.

• Multi-stakeholder collaborations: we believe multi-stakeholder collaborations, which aim to develop and imple-
ment responsible data sharing approaches, are an efficient, transparent and responsible way to facilitate access to
(novel) health data for research and healthcare provision. These initiatives rely on a fit-for-purpose data model
designed to ensure adequate data privacy and security, coupled with broad representation from different stake-
holders and an independent Steering Committee that ensures strong governance and ethical use of health data.
We are committed to support the adoption of such multi-stakeholder initiatives and welcome collaborations
with a wide range of potential partners across multiple disease areas;

• Collaborative cross-industry approach: we believe the pharmaceutical industry should collaborate on nonproduct,
disease area-specific evidence generation, to further expand on the foundations laid by evidence-based medicine [9]

and contribute to the acceleration of medical practice. We commit to share the insights derived from RWD using
the appropriate channels, to the extent permitted under the data license agreements, in order to improve the
collective disease area understanding and empower patients to seek the right care, help healthcare professionals
best treat their patients and support healthcare systems in preparing for future challenges;

• Long-term commitment: wherever possible and meaningful, we believe in supporting long-term commitments
to the sustainable creation and curation of new data assets, including the routine capture of outcomes data,
embedded within healthcare systems. Such long-term commitments ensure that innovation continues to live on
and that value is shared with the very sources of the data collection effort, instead of being exclusively captured
by the sponsor(s). The success [10] of such efforts is dependent on collaboration between multiple stakeholders,
including electronic medical record providers;

• Frameworks and methodological standards: we support existing good practice for the generation of high-quality
RWE, including ISPOR-ISPE guidance, for example, “Good Practices for Real-World Data Studies of Treatment
and/or Comparative Effectiveness” [11]; “Reporting to Improve Reproducibility and Facilitate Validity Assessment
for Healthcare Database Studies” [12] and “Use of Electronic Health Record Data in Clinical Investigations” [13].
Furthermore, we welcome collaborations with regulators and commit to engage in constructive dialogue on
shaping frameworks for advancing the generation and acceptability of RWE in support of stakeholder decisions.

By endorsing these principles, we are paving the way for the pharmaceutical industry to place itself even further
at the forefront as a trusted partner in delivering better outcomes for patients.

This document lays the foundations for establishing trusted partnerships between the pharmaceutical industry
and health systems. Naturally, several practical questions remain such as how to ensure equitable investments
in healthcare are made, where long-term value is not solely realized in a small number of specialist centers, but
widely shared across the system, and what is the most appropriate mechanism with which to make an investment?
Questions such as these deserve their own dedicated discussion in future papers.

The healthcare environment is ripe for embracing trust-based partnerships. Indeed, the long-term sustainability
of a vibrant learning healthcare system depends on establishing trust-based partnerships which also involve the
patient and medical communities. The pharmaceutical industry now has a rare opportunity to fundamentally
re-define their relationships with health systems, healthcare providers and patients, with focus on reconciling
innovation, efficiency and patient outcomes, with RWD in a facilitating role as the source of insight, transparency
and objectivity.

By ensuring healthcare decisions, including both pharmacological and nonpharmacological interventions, are
consistently informed by a growing body of high-quality evidence, those trust-based partnerships will fulfill their
promise and unlock unique value for society, with benefits delivered to many stakeholders, including the medical
community and the ultimate beneficiary, the patient.
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After decades of warfarin being the only oral anticoagulant (OAC) widely available for stroke prevention
in atrial fibrillation, four direct OACs (apixaban, dabigatran, edoxaban and rivaroxaban) were approved
after demonstrating noninferior efficacy and safety versus warfarin in randomized controlled trials. Com-
parative effectiveness research of OACs based on real-world data provides complementary information
to randomized controlled trials. Propensity score matching and inverse probability of treatment weight-
ing are increasingly popular methods used to address confounding by indication potentially arising in
comparative effectiveness research due to a lack of randomization in treatment assignment. This review
describes the fundamentals of propensity score matching and inverse probability of treatment weighting,
appraises differences between them and presents applied examples to elevate understanding of these
methods within the atrial fibrillation field.
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Atrial fibrillation (AF) is a cardiac arrhythmia affecting millions worldwide. In 2010, the global prevalence of AF
was estimated at 33.5 million [1] and projections indicate a doubling in the number of patients by 2050 [2], with
the ageing population a key contributing factor. AF significantly increases the risk of thromboembolic stroke with
patients five-times more likely to experience stroke compared with those without AF [3]. Oral anticoagulants (OACs)
are effective in reducing the risk of stroke by 64%, according to a meta-analysis [4]. After decades of warfarin being
the only OAC widely available, four direct OACs (DOACs; apixaban, dabigatran, edoxaban and rivaroxaban)
were approved after demonstrating noninferior efficacy and safety versus warfarin in randomized controlled trials
(RCTs) [5–8].

RCTs evaluate the efficacy and safety of OACs in well-controlled environments with precisely defined study
population inclusion and exclusion criteria. RCTs are purposefully designed to minimize sources of bias and
provide the ideal conditions for testing whether a cause–effect relationship exists between a treatment and an
outcome [9]. Real-world evidence (RWE), derived from data collected in the normal delivery of clinical care,
provides complementary information to that obtained from RCTs and is of increasing interest to healthcare
decision makers [10]. RWE can be used to establish whether trial efficacy translates into real-world effectiveness,
or to explore how a treatment performs in more diverse patient populations with differing levels of adherence
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and compliance, over a longer period of follow-up and in comparative effectiveness research (CER) versus other
therapies that have not been examined under trial conditions [11].

The introduction of DOACs has significantly expanded the number of treatment options available to AF patients,
yet to date there have been no RCTs comparing the efficacy of one DOAC against another. In the absence of head-
to-head RCTs, the comparative effectiveness of DOACs continues to be extensively researched using RWE studies.
In a recent systematic review and meta-analysis, Li and colleagues identified 15 RWE studies comparing rivaroxaban
versus dabigatran, nine studies comparing rivaroxaban versus apixaban and nine studies comparing apixaban versus
dabigatran; there were no comparisons with edoxaban, reflecting its later approval date. The meta-analyzed results
showed no significant differences between the three DOACs compared in terms of stroke or systemic embolism
risk, whereas apixaban was associated with a significantly lower risk of major bleeding compared with rivaroxaban
and dabigatran, and rivaroxaban conferred a significantly higher risk of major bleeding compared with dabigatran.
Li and colleagues concluded that the study results may help to guide treatment decisions on the choice of DOACs
for patients with AF. However, highlighting a key limitation, the authors reflected that DOAC treatments were
not prescribed at random, therefore there could be confounding by indication bias influencing the findings. The
potential for bias among the included studies was assessed using the Cochrane Collaboration ROBINS-I (Risk of
Bias In Non-randomized Studies of Interventions) evaluation tool, among which ‘confounding’ and ‘selection of
participants’ are two key assessment domains [12,13].

Confounding by indication may arise in real-world comparative effectiveness studies when there are inherent
differences in the patients prescribed the two or more treatments being compared. As defined by Joseph and
colleagues, confounding by indication refers to bias in relationship between a treatment and the intended outcome
of the treatment due to the clinical reasons for the treatment. The indication for treatment is based upon both
the physician’s and the patient’s judgement of the disease severity, prognosis and expected therapeutic effect of
the treatment [14]. RCTs remain the gold standard study design for evaluating the relative benefits and/or risks of
treatments, because the process of randomization minimizes imbalances in both observed and unobserved factors
that could introduce bias into the assignment of patients to the treatment groups being compared [15]. In an
RCT comparing two treatments, patients are equally likely (i.e., have a 50% chance) to receive either treatment,
therefore this maximizes the probability that any resulting differences in outcomes between groups are truly due to
differences in the treatments and are not due to any observed or unobserved differences in the patients receiving
each treatment. CER using real-world data therefore requires rigorous statistical methods, often extending beyond
multivariable regression models, to account for the lack of randomization in treatment assignment and control for
confounding by indication [16]. Unlike an RCT, these methods are however restricted to addressing only observed
confounders (i.e., factors that are measured and collected in the study).

Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) are increasingly popular
methods used to address confounding by indication in RWE studies. Within the AF field, the number of research
publications referencing these methods has been increasing year-on-year, as indexed in the PubMed database
(Figure 1). Researchers have traditionally relied upon multivariable regression models to adjust for differences in
patient characteristics, however, they are now turning to PSM and IPTW because of the stronger theoretical and
statistical basis for these methods that has been argued in the literature [17]. While, for the most part, multivariable
regression and propensity score-based methods (such as PSM and IPTW) have been found to lead to similar
study conclusions, [18,19] from a theoretical standpoint, PSM and IPTW aim to achieve a balanced distribution
of confounders across treatment groups and thereby more closely emulate the properties of an RCT [20]. From
a statistical standpoint, propensity score-based methods have been shown to lead to more robust and less biased
estimations of the treatment effect when there are few outcome events relative to the number of potential confounders
(i.e., fewer than eight events per confounder) [21]. In Li and colleagues’ systematic review of 15 real-world studies
reporting comparisons between DOACs, two thirds of studies continued to use multivariable logistic or survival
regression models alone to address confounding, with one third of studies opting for more robust PSM and IPTW
methods. The studies using PSM and IPTW methods were more often assessed as being at low risk of bias [12].

While PSM and IPTW endeavor to achieve the same objective in balancing out differences between treatment
groups, the two methods provide a different measurement of the treatment effect and this should be interpreted
accordingly. When applied to the same data, PSM and IPTW may not always point to the same findings suggesting
that these methods are not strictly interchangeable. For example, a study comparing dabigatran versus warfarin
among real-world AF patients reported a hazard ratio of 0.77 (95% confidence interval: 0.54–1.09) for the risk of
stroke and 0.75 (0.65–0.87) for the risk of major bleeding when estimated using PSM, contrasting with 0.00 (0.00–
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Number of AF search results referencing PSM or IPTW methods by year
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Figure 1. Increase in propensity score matching and inverse probability of treatment weighting methods within
comparative effectiveness research of oral anticoagulants (2006–2019). Search results per year were downloaded
from the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/) on 29-Nov-2019 based on the following search
terms: (anticoagulant* OR warfarin OR apixaban OR dabigatran OR rivaroxaban OR edoxaban) AND (atrial
fibrillation) AND (propensity score OR inverse probability of treatment weighting).
AF: Atrial fibrillation; IPTW: Inverse probability of treatment weighting; PSM: Propensity score matching.

0.56) and 0.08 (0.08–0.10), respectively, when estimated using IPTW [22]. As shown, PSM and IPTW procedures
yielded substantially different estimates of the relative risk reduction in bleeding associated with dabigatran and
conflicting findings with regards to stroke. In subsequent analyses re-calculating the IPTW results, a hazard ratio
of 0.57 (0.46–0.71) for the risk of stroke and 0.75 (0.69–0.82) for the risk of major bleeding was obtained, which
were closer (but not identical) estimates to the PSM results. Therefore, as these methods become more widely
used in real-world studies comparing the effectiveness and safety of OACs, there is an important need to improve
understanding of the fundamentals of PSM and IPTW in order to cast a critical eye over study findings within the
field of AF research.

To this end, this review describes PSM and IPTW methods to address confounding by indication in real-world
studies, appraises similarities and differences between these techniques and alongside gives illustrative examples
from some case studies comparing the effectiveness and safety of OACs. A clearer conceptualization of PSM and
IPTW methods will help to ensure the findings of comparative studies are correctly interpreted, communicated
and implemented into AF-related treatment decisions in clinical practice.

Case studies
Four case studies involving the use of PSM, IPTW or a combination of both methods in real-world CER of
OACs will be presented throughout this article to demonstrate how these methods have been applied in practical
terms. These case studies were selected from a range of researchers, data sources and geographies (Table 1). The
ARISTOPHANES study from USA [23] and the SAKURA AF Registry study from Japan [24] used PSM to compare
the effectiveness and safety of apixaban, dabigatran, rivaroxaban and warfarin among nonvalvular AF patients [23].
Using the Danish nationwide databases, Larsen and colleagues, [25] instead used the IPTW method to investigate
the comparative effectiveness and safety of the same four OACs. Seeger and colleagues, [22] used both PSM and
IPTW techniques to compare warfarin with dabigatran in two commercial health insurance databases in the USA.

future science group www.futuremedicine.com 605

https://www.ncbi.nlm.nih.gov/pubmed/


Review Allan, Ramagopalan, Mardekian et al.

Ta
b

le
1.

Se
le

ct
ed

ca
se

st
u

d
ie

s
o

f
re

al
-w

o
rl

d
co

m
p

ar
at

iv
e

ef
fe

ct
iv

en
es

s
re

se
ar

ch
o

f
o

ra
l

an
ti

co
ag

u
la

n
ts

u
si

n
g

p
ro

p
en

si
ty

sc
o

re
m

at
ch

in
g

an
d
/

o
r

in
ve

rs
e

p
ro

b
ab

ili
ty

o
f

tr
ea

tm
en

t
w

ei
g

h
ti

n
g

.
St

u
d

y
(y

ea
r)

D
at

a
so

u
rc

e
O

A
C

s
M

ai
n

st
u

d
y

en
d

p
o

in
ts

V
ar

ia
b

le
s

in
cl

u
d

ed
in

p
ro

p
en

si
ty

sc
o

re
St

at
is

ti
ca

la
n

al
ys

is
R

ef
.

Li
p

(2
01

8)
A

R
IS

TO
PH

A
N

ES
,

U
SA

W
ar

fa
ri

n
,

d
ab

ig
at

ra
n

,
ri

va
ro

xa
b

an
,

ap
ix

ab
an

–
St

ro
ke

/
SE

,i
n

cl
u

d
in

g
is

ch
em

ic
st

ro
ke

,h
em

o
rr

h
ag

ic
st

ro
ke

an
d

SE –
M

aj
o

r
b

le
ed

in
g

,i
n

cl
u

d
in

g
g

as
tr

o
in

te
st

in
al

b
le

ed
in

g
an

d
in

tr
ac

ra
n

ia
lh

em
o

rr
h

ag
e

A
g

e,
g

en
d

er
,U

S
re

g
io

n
,C

h
ar

ls
o

n
C

o
m

o
rb

id
it

y
In

d
ex

,b
le

ed
in

g
h

is
to

ry
,c

o
n

g
es

ti
ve

h
ea

rt
fa

ilu
re

,d
ia

b
et

es
m

el
lit

u
s,

h
yp

er
te

n
si

o
n

,
re

n
al

d
is

ea
se

,l
iv

er
d

is
ea

se
,m

yo
ca

rd
ia

li
n

fa
rc

ti
o

n
,

d
ys

p
ep

si
a/

st
o

m
ac

h
d

is
co

m
fo

rt
,p

er
ip

h
er

al
va

sc
u

la
r

d
is

ea
se

,
st

ro
ke

/
SE

,T
IA

,a
n

em
ia

/
co

ag
u

la
ti

o
n

d
ef

ec
ts

,a
lc

o
h

o
lis

m
,

co
n

co
m

it
an

t
u

se
o

f:
A

C
E/

A
R

B
s,

am
io

d
ar

o
n

e,
b

et
a-

b
lo

ck
er

s,
H

2-
re

ce
p

to
r

an
ta

g
o

n
is

ts
,p

ro
to

n
p

u
m

p
in

h
ib

it
o

rs
,s

ta
ti

n
s,

an
ti

p
la

te
le

t,
N

SA
ID

S

PS
M

:1
:1

p
ro

p
en

si
ty

sc
o

re
m

at
ch

in
g

.
N

ea
re

st
n

ei
g

h
b

o
r

m
at

ch
in

g
m

et
h

o
d

w
it

h
o

u
t

re
p

la
ce

m
en

t
w

it
h

a
ca

lip
er

o
f

0.
01

,w
as

u
se

d
to

m
at

ch
th

e
p

at
ie

n
ts

[2
3]

O
ku

m
u

ra
(2

01
8)

SA
K

U
R

A
A

F
R

eg
is

tr
y,

Ja
p

an
W

ar
fa

ri
n

,
d

ab
ig

at
ra

n
,

ri
va

ro
xa

b
an

,
ap

ix
ab

an

–
St

ro
ke

(i
sc

h
em

ic
st

ro
ke

,
h

em
o

rr
h

ag
ic

st
ro

ke
o

r
TI

A
)

o
r

SE
–

M
aj

o
r

b
le

ed
in

g

A
g

e,
se

x,
h

ei
g

h
t,

w
ei

g
h

t,
p

ar
o

xy
sm

al
A

F,
h

yp
er

te
n

si
o

n
,d

ia
b

et
es

m
el

lit
u

s,
h

ea
rt

fa
ilu

re
,v

as
cu

la
r

d
is

ea
se

,s
tr

o
ke

o
r

TI
A

,m
aj

o
r

b
le

ed
in

g
,h

is
to

ry
o

f
ab

la
ti

o
n

,a
n

ti
p

la
te

le
t

ag
en

t
u

se
,n

o
n

st
er

o
id

al
an

ti
-i

n
fl

am
m

at
o

ry
d

ru
g

u
se

,O
A

C
th

er
ap

y
d

u
ra

ti
o

n
an

d
C

rC
l

PS
M

:m
at

ch
in

g
w

as
ac

h
ie

ve
d

b
y

a
1:

1
n

ea
re

st
n

ei
g

h
b

o
r

ap
p

ro
ac

h
(w

it
h

o
u

t
re

p
la

ce
m

en
t)

w
it

h
in

a
ca

lip
er

o
f

0.
05

[2
4]

La
rs

en
(2

01
6)

D
an

is
h

n
at

io
n

w
id

e
d

at
ab

as
es

,
D

en
m

ar
k

W
ar

fa
ri

n
,

d
ab

ig
at

ra
n

,
ri

va
ro

xa
b

an
,

ap
ix

ab
an

–
Is

ch
em

ic
st

ro
ke

;a
co

m
p

o
si

te
o

f
is

ch
em

ic
st

ro
ke

o
r

sy
st

em
ic

em
b

o
lis

m
;d

ea
th

;a
n

d
a

co
m

p
o

si
te

o
f

is
ch

em
ic

st
ro

ke
,

sy
st

em
ic

em
b

o
lis

m
o

r
d

ea
th

–
A

n
y

b
le

ed
in

g
,i

n
tr

ac
ra

n
ia

l
b

le
ed

in
g

,m
aj

o
r

b
le

ed
in

g

A
g

e,
se

x;
is

ch
em

ic
st

ro
ke

o
r

sy
st

em
ic

em
b

o
lis

m
o

r
tr

an
si

en
t

is
ch

em
ic

at
ta

ck
;v

as
cu

la
r

d
is

ea
se

;h
yp

er
te

n
si

o
n

;d
ia

b
et

es
;c

an
ce

r;
re

ce
n

t
p

re
sc

ri
p

ti
o

n
o

f
as

p
ir

in
,b

et
a-

b
lo

ck
er

s,
n

o
n

st
er

o
id

al
an

ti
-i

n
fl

am
m

at
o

ry
d

ru
g

s,
o

r
st

at
in

s;
an

d
C

H
A

2D
S2

-V
A

Sc
an

d
H

A
S-

B
LE

D
sc

o
re

s

IP
TW

:w
ei

g
h

ts
ca

lc
u

la
te

d
u

si
n

g
g

en
er

al
iz

ed
b

o
o

st
ed

m
o

d
el

s,
b

as
ed

o
n

10
,0

00
re

g
re

ss
io

n
tr

ee
s

[2
5,

45
]

Se
eg

er
(2

01
6)

Tw
o

co
m

m
er

ci
al

h
ea

lt
h

in
su

ra
n

ce
d

at
ab

as
es

(M
ar

ke
tS

ca
n

R ©
/

C
lin

fo
rm

at
ic

sR ©
),

U
SA

W
ar

fa
ri

n
,

d
ab

ig
at

ra
n

–
H

o
sp

it
al

iz
at

io
n

fo
r

st
ro

ke
(h

em
o

rr
h

ag
ic

o
r

is
ch

em
ic

)
–

H
o

sp
it

al
iz

at
io

n
fo

r
m

aj
o

r
b

le
ed

in
g

,i
n

cl
u

d
in

g
in

tr
ac

ra
n

ia
l

an
d

ex
tr

ac
ra

n
ia

lb
le

ed
in

g

A
g

e,
se

x,
ce

n
su

s
re

g
io

n
,c

al
en

d
ar

ti
m

e,
co

ro
n

ar
y

ar
te

ry
d

is
ea

se
,

sy
st

em
ic

em
b

o
lis

m
,D

V
T,

PE
,h

yp
er

te
n

si
o

n
,d

ia
b

et
es

,
h

yp
er

lip
id

em
ia

,a
th

er
o

sc
le

ro
si

s,
h

ea
rt

fa
ilu

re
,s

tr
o

ke
,i

n
tr

ac
ra

n
ia

l
b

le
ed

in
g

,h
em

o
rr

h
ag

ic
st

ro
ke

,i
sc

h
em

ic
st

ro
ke

,p
re

vi
o

u
s

TI
A

,
C

H
A

D
S2

sc
o

re
,C

H
A

2D
S2

-V
A

Sc
sc

o
re

,p
re

vi
o

u
s

M
I,

H
A

S-
B

LE
D

,
p

ep
ti

c
u

lc
er

d
is

ea
se

,u
p

p
er

G
Ib

le
ed

,l
o

w
er

/
u

n
sp

ec
ifi

ed
G

Ib
le

ed
,

u
ro

g
en

it
al

b
le

ed
,o

th
er

b
le

ed
s,

p
er

ip
h

er
al

va
sc

u
la

r
d

is
ea

se
o

r
PV

D
su

rg
er

y,
p

ri
o

r
liv

er
d

is
ea

se
,p

ri
o

r
ca

n
ce

r,
re

n
al

d
ys

fu
n

ct
io

n
,a

cu
te

re
n

al
d

is
ea

se
,c

h
ro

n
ic

re
n

al
in

su
ffi

ci
en

cy
,d

ia
b

et
ic

n
ep

h
ro

p
at

h
y,

h
yp

er
te

n
si

ve
n

ep
h

ro
p

at
h

y,
m

is
ce

lla
n

eo
u

s
re

n
al

in
su

ffi
ci

en
cy

,
as

p
ir

in
,a

sp
ir

in
/
d

ip
yr

id
am

o
le

,c
lo

p
id

o
g

re
l,

p
ra

su
g

re
l,

ti
ca

g
re

lo
r,

o
th

er
an

ti
p

la
te

le
t

ag
en

ts
,N

SA
ID

s,
h

ep
ar

in
,l

o
w

-m
o

le
cu

la
r

w
ei

g
h

t
h

ep
ar

in
s,

PG
P

in
h

ib
it

o
rs

,A
R

B
,A

C
E

in
h

ib
it

o
r,

B
et

a
b

lo
ck

er
,c

al
ci

u
m

ch
an

n
el

b
lo

ck
er

,o
th

er
h

yp
er

te
n

si
o

n
d

ru
g

s,
an

ti
ar

rh
yt

h
m

ic
d

ru
g

s
(o

th
er

th
an

am
io

d
ar

o
n

e
an

d
d

ro
n

ed
ar

o
n

e)
,s

ta
ti

n
,o

th
er

lip
id

-l
o

w
er

in
g

d
ru

g
s,

d
ia

b
et

es
m

ed
ic

at
io

n
s,

an
ti

d
ep

re
ss

an
ts

,
an

ti
p

sy
ch

o
ti

cs
,a

n
ti

co
n

vu
ls

an
ts

,p
ro

to
n

p
u

m
p

in
h

ib
it

o
r,

H
2

re
ce

p
to

r
an

ta
g

o
n

is
t,

o
th

er
g

as
tr

o
p

ro
te

ct
iv

e
ag

en
ts

,v
it

am
in

K
th

er
ap

y,
n

u
m

b
er

o
f

m
ed

ic
at

io
n

s,
n

u
m

b
er

o
f

h
o

sp
it

al
iz

at
io

n
s,

n
u

m
b

er
o

f
h

o
sp

it
al

d
ay

s,
n

u
m

b
er

o
f

o
ffi

ce
vi

si
ts

,n
u

m
b

er
o

f
ca

rd
io

lo
g

is
t

vi
si

ts
,

n
u

m
b

er
o

f
n

eu
ro

lo
g

is
t

vi
si

ts
,h

o
sp

it
al

iz
at

io
n

in
30

d
ay

s
p

ri
o

r
to

tr
ea

tm
en

t
in

it
ia

ti
o

n
,n

u
m

b
er

o
f

la
b

o
ra

to
ry

te
st

s
o

rd
er

ed
,n

u
m

b
er

o
f

IN
R

(p
ro

th
ro

m
b

in
)

te
st

s
o

rd
er

ed
,n

u
m

b
er

o
f

lip
id

te
st

s
o

rd
er

ed
,

n
u

m
b

er
o

f
cr

ea
ti

n
in

e
te

st
s

o
rd

er
ed

,t
re

at
in

g
p

re
sc

ri
b

er

PS
M

:A
1:

1
PS

m
at

ch
w

as
p

er
fo

rm
ed

u
si

n
g

th
e

n
ea

re
st

n
ei

g
h

b
o

r
m

et
h

o
d

o
lo

g
y

w
it

h
a

m
ax

im
u

m
ca

lip
er

o
f

0.
05

an
d

ad
d

it
io

n
al

m
at

ch
in

g
w

it
h

in
th

e
ca

le
n

d
ar

q
u

ar
te

r
to

im
p

ro
ve

b
al

an
ce

w
it

h
re

sp
ec

t
to

p
re

sc
ri

b
in

g
b

eh
av

io
rs

th
at

m
ig

h
t

ch
an

g
e

o
ve

r
ti

m
e

IP
TW

:w
ei

g
h

ti
n

g
w

as
p

er
fo

rm
ed

u
si

n
g

IP
TW

(1
/
PS

fo
r

d
ab

ig
at

ra
n

in
it

ia
to

rs
an

d
1/

(1
−P

S)
fo

r
w

ar
fa

ri
n

in
it

ia
to

rs
).

Th
e

IP
TW

an
al

ys
is

w
as

re
p

ea
te

d
af

te
r

ca
p

p
in

g
(t

ru
n

ca
ti

n
g

)
th

e
w

ei
g

h
ts

at
a

va
lu

e
o

f
4.

0.

[2
2]

A
C

E:
A

ng
io

te
ns

in
-c

on
ve

rt
in

g
en

zy
m

e;
A

F:
A

tr
ia

lfi
br

ill
at

io
n;

A
RB

:A
ng

io
te

ns
in

II
Re

ce
pt

or
Bl

oc
ke

rs
;D

V
T:

D
ee

p
ve

in
th

ro
m

bo
si

s;
IN

R:
In

te
rn

at
io

na
ln

or
m

al
is

ed
ra

tio
;I

PT
W

:I
nv

er
se

pr
ob

ab
ili

ty
of

tr
ea

tm
en

t
w

ei
gh

tin
g;

N
SA

ID
:N

on
st

er
oi

da
l

an
ti-

in
fla

m
m

at
or

y
dr

ug
s;

O
A

C
:O

ra
la

nt
ic

oa
gu

la
nt

;P
E:

Pu
lm

on
ar

y
em

bo
lis

m
;P

SM
:P

ro
pe

ns
ity

sc
or

e
m

at
ch

in
g;

SE
:S

ys
te

m
ic

em
bo

lis
m

;T
IA

:T
ra

ns
ie

nt
is

ch
em

ic
at

ta
ck

.

606 J. Comp. Eff. Res. (2020) 9(9) future science group



Comparative effectiveness research of oral anticoagulants Review

Propensity scores: the basis for PSM & IPTW
Propensity scores form the basis for both PSM and IPTW methods, however as later described, the differentiating
step is in how propensity scores are then used to control for differences in the characteristics of patients receiving
the treatments being compared.

As defined by Rosenbaum and Rubin, an estimated propensity score reflects the probability of treatment
assignment conditional on a patient’s measured baseline characteristics, [26] such as their age, gender, comorbidities
and concurrent medications. In the real-world setting, and in direct contrast to an RCT, treatments are not
prescribed at random and are instead likely influenced by the characteristics of the patients at the time a treatment
decision was made. For example, the decision to prescribe an OAC to an AF patient is likely informed by their
stroke and bleeding risks. A patient’s pretreatment characteristics can therefore be used to predict, and provide a
measure (from 0 to 1) of, how likely the patient is to receive a treatment. Through leveling out the distribution of
scores across treatment groups, propensity scores can minimize confounding by indication bias and provide a fairer
comparison of different treatments [27].

In practice, propensity scores are estimated using regression-based methods and are easily implemented with
statistical software packages such as SAS, Stata and R [28–30]. Most often, when comparing two treatments, a logistic
regression model is used in which treatment assignment (a binary dependent variable with value 1 if the patient
receives the treatment of interest and value 0 if the patient receive the comparator treatment) is regressed upon
patient baseline characteristics (independent variables) [27]. When selecting variables to be included in the propensity
score estimation, variables that are both related to the exposure (i.e., treatment assignment) and to the outcome
(i.e., the main study end points) are recommended to provide the most precise estimates [31]. Misspecification of
the propensity score can introduce bias and lead to invalid inferences therefore careful variable selection is essential.
Extensions of the propensity score, such as the doubly robust method, facilitate more systematic variable selection
and provide greater protection against model misspecification, however, are not yet widely known or adopted
among researchers [32,33]. Three of the four case studies of this review used logistic regression models to generate
the propensity scores, [22–24] whereas the fourth study used generalized boosted models, an advanced technique
based on machine learning methods, applicable when comparing more than two treatments simultaneously [23].
Common variables included in the propensity score estimations were age, gender, bleeding history, stroke history,
comorbidities and concomitant meditations (Table 1).

Once the propensity scores are estimated, a range of different ways can be used to balance the distribution of the
scores, and in turn confounding factors, across treatment groups being compared. This includes propensity score
adjustment, matching, stratification and weighting [27]. Among them, PSM and IPTW are emerging as the most
commonly used propensity score methods within the field of AF research. Hence, the focus of this review is to
provide foundational understanding of PSM and IPTW and highlight fundamental differences in methodology and
interpretation of these two increasingly implemented techniques. Further resources on adjustment and stratification,
and alternative weighting procedures to IPTW, are available elsewhere [27,34,35].

The main conceptual difference between PSM and IPTW relates to notion of the treatment effect being estimated.
Whereas IPTW estimates the average treatment effect (ATE), PSM estimates the average treatment effect for the
treated (ATT). The ATE reflects the effect of the treatment in the scenario that every patient within the population
was offered the treatment. In essence, this shifts the entire population from untreated to treated. This contrasts
with the ATT, which reflects the effect of the treatment only among those who were ultimately treated [27]. The
research question being addressed will guide the decision as to whether an estimation of the ATE or ATT is of
greater relevance. Estimation of the ATE may be less appropriate when a large proportion of patients are not good
candidates for one of the treatment options. An example is the comparison of low dose apixaban patients with
all warfarin patients, as some warfarin patients do not meet apixaban low dose criteria, it would be unrealistic to
estimate the treatment effect among all patients [36]. Grasping the conceptual differences between the ATE and
ATT is crucial to the correct interpretation of results from the application of PSM and IPTW.

PSM: estimating the ATT
PSM works by matching patients receiving the treatment of interest with patients receiving the comparator
treatment based on the estimated value of their propensity score. PSM provides an estimation of the ATT, because
only patients who received the treatment of interest are matched with comparators for comparative analyses [27].

In practice, patients are matched with others who have a similar propensity score value, as an exact score is
not always possible. A variety of different matching methods are available [37] with four main analytics decisions:
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Table 2. An overview of available propensity score matching techniques to pair up patients receiving the treatment of
interest with suitable comparator patients.
Matching techniques Definition Considerations

Matching patients one-to-one (1:1) or many-to-one (m:1):

1:1 matching Matching patients 1:1 means that only one patient in
the comparator group is selected for each treated
patient

– 1:1 matching is most commonly used
– m:1 has the advantage of retaining more patients in
the analysis, however, the quality of second or third
choice matches may be lower which increases bias

m:1 matching Matching patients m:1 means that multiple
comparator patients are selected for each treated
patient

Matching patients with or without replacement:

Matching without replacement Matching without replacement means that once a
patient from the comparator group has been
matched, they cannot be selected as a comparator for
another treated patient

– Matching without replacement is more commonly
used
– Matching with replacement could be beneficial if the
number of comparator patients is small, but may mean
some comparators are matched multiple times and
others not at all

Matching with replacement Matching with replacement allows for a patient in the
comparator group to be matched and act as a
comparator for more than one of the treated patients

Matching patients using a greedy or optimal technique:

Greedy nearest neighbor matching Using a greedy matching technique means that
treated patients are randomly selected one at a time
to be matched to their nearest comparator from the
pool of remaining comparators still available to be
matched. Here the closest match is made irrespective
of whether the selected comparator would have been
a better match for another treated patient

– Greedy nearest neighbor matching is more commonly
used
– Greedy and optimal matching in general perform
similarly well in creating balanced treatment and
comparator groups
– Optimal matching may be preferred when the sample
of comparator patients is small

Optimal matching With optimal matching, the goal is to pair up treated
and comparator patients such that the best possible
combination of nearest matches are made

Matching patients with a caliper width:

Without a caliper width When propensity score matching is performed
without a caliper width, this means that matches are
made without any limit on the distance between the
propensity score values in each pair of matches

A caliper width is recommended to match patients
within a given threshold. Without a caliper threshold,
treated patients could be matched to their nearest
comparator even if the differences in propensity scores
were very large

Applying a caliper width The role of a caliper width is to set a maximum
distance between the propensity score values in each
pair of matches

matching patients one-to-one (1:1) or many-to-one (m:1) [38]; matching patients with or without replacement [39];
matching patients using a greedy or optimal technique [39]; and whether to apply a caliper width (Table 2) [40].

First, matching patients 1:1 means that only one patient in the comparator group is selected for each treated
patient, as opposed to selecting multiple comparator patients in m:1 matching. The rationale for selecting more
than one comparator is to make more use of the available data by retaining more patients in the analysis, which
in turn may also lead to increased precision. However, matching patients m:1 has also been shown to increase bias
because second or third choice matches may be of lower quality [39]. Matching patients 1:1 is most commonly used
in practice [38,41].

Second, matching without replacement means that once a patient from the comparator group has been matched,
they cannot be selected as a comparator for another treated patient. Conversely, matching with replacement allows
for a patient in the comparator group to be matched and act as a comparator for more than one of the treated
patients. Matching patients with replacement serves to increase the quality of matching and could be useful if there
are few comparator patients relative to number of patients receiving the treatment of interest. However, with this
approach it is possible that a single comparator patient could be matched multiple times, whereas another potential
comparator may not be matched at all. This could result in the treatment effect being estimated based on a very
restricted subset of comparators. Furthermore, when matching with replacement, the matched pairs are no longer
independent and this must be accounted for in the subsequent analysis and interpretation of study findings [39].
Matching patients with replacements has seldom been implemented in practice [37].
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Third, using a greedy matching technique means that treated patients are randomly selected one at a time to
be matched to their nearest comparator from the pool of remaining comparators still available to be matched.
Here the closest match is made irrespective of whether the selected comparator would have been a better match
for another treated patient. In contrast, optimal matching intends to pair up treated and comparator patients such
that the best possible combination of nearest matches are made. Optimal matching may be preferred over greedy
matching when the sample of comparator patients is small, however when there is less competition for matches,
optimal matching does not usually perform any better than greedy matching in creating balanced treatment and
comparator groups. Greedy matching is more commonly used in practice [37,39].

Fourth, the role of a caliper width is to set a maximum distance between the propensity score values in each
pair of matches. Without a caliper threshold, treated patients could be matched to their nearest comparator even
if the differences in propensity scores were very large. In studies to date, there has been a lack of consistency in the
maximum distance selected for the caliper width, however recent simulations support using a caliper width equal
to 0.2 of the standard deviation of the logit of the propensity score [40].

Three out of the four case studies included this review implemented PSM techniques in their CER of OACs
(Table 1) [22–24]. In the ARISTOPHANES study, Lip and colleagues used 1:1 nearest neighbor matching without
replacement with a caliper width of 0.01 [23]. In the SAKURA AF Registry study, Okumura and colleagues also
used 1:1 nearest neighbor matching without replacement, however, with a caliper width set at 0.05 of the standard
deviation of the logit of the propensity score [24]. Similarly, in their analysis of two commercial health insurance
databases in USA, Seeger and colleagues used 1:1 nearest neighbor matching with a caliper width of 0.05 and
additional matching on calendar quarter to account for any changes in prescribing behaviors over time. It was not
reported whether patients were matched with or without replacement [22]. The main difference between the three
studies in terms of their chosen PSM approach is in the selection of the caliper width. The selection of a narrow
caliper distance ensures patients are more closely matched on the value of the propensity score, however selecting a
distance that is too narrow could result in too few matches being made [40].

Once the matched cohort of treated and comparator patients has been formed, the fundamental next step is
to verify that a balanced distribution of patient characteristics across treated and comparator patients has been
achieved by way of using the propensity score. This check could be made using statistical significance tests (e.g. X-
square/t-test), however, computing the standardized differences of each baseline variable is now a more common
practice. Lip and colleagues, and Seeger and colleagues both reported computing standardized differences with a
threshold of 10% to check whether adequate balance of covariates across treatment and control groups had been
achieved through the PSM process [22,23].

Were any systematic differences to be found between the treatment and comparator cohorts, the propensity
score model may require some modifications on the included variables and/or matching procedure. Alternatively,
subsequent adjustments could be made in the main analysis to account for any remaining imbalances in patient
characteristics. Variables related to both the outcome and treatment assignment have been shown to provide the
best balance of patient characteristics across treatment groups [31]. However, a common misperception for the
development of the propensity score is to aim for perfect prediction of treatment assignment and the inclusion
of variables that are related only to treatment assignment should be avoided [42]. Researchers should set out a
priori which approach will be used in the event that balance in patient characteristics is not achieved through
PSM (i.e., whether the propensity score will be re-estimated or if post-PSM adjustments will be made). Once
satisfied with the PSM step, the comparative assessment can be performed, for example, comparing the risk of the
study main outcome with hazard ratios from Cox proportional hazards regression models or some other analytic
method of choice. What is advantageous about PSM is that the method matches patients who truly received the
treatment with those who truly received the comparator to allow a direct comparison of the outcomes of these
two groups. The method is transparent, readily understood and easy to communicate. One frequently discussed
drawback of the PSM method is that patients who could not be matched are as a result excluded from the analysis.
Unmatched patients may be systematically different from matched patients, limiting the representativeness of the
study population and generalizability of the overall study findings. Yet, an alternative viewpoint is that this form of
study population restriction ensures overlap across treatment and comparator groups on the most important patient
characteristics thereby removing any individuals who are extreme outliers and arguably should not be compared [43].
Another consideration is that PSM is limited to pair-wise comparisons of one treatment against another. If more
than one treatment comparison is being made, for example comparing apixaban versus warfarin and apixaban
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versus dabigatran, the matched pairs for each of the comparisons are likely to be different, so drawing inferences
across these two comparisons may not be appropriate.

IPTW: estimating the ATE
In the IPTW method, weights are assigned to patients based on the inverse of their probability of receiving
treatment, as estimated by the propensity score. IPTW results in a pseudo-population in which patients with a high
probability of receiving treatment have a smaller weight and patients with a low probability of receiving treatment
have a larger weight and thus the distribution of measured patient characteristics used to calculate the propensity
score becomes independent of treatment assignment. IPTW provides an estimation of the ATE, because the study
population is re-weighted to assess the effects of the treatment in the scenario that it was offered to all patients
within the population [27,44].

When comparing two treatments, the weight for each patient is calculated by inverting the probability of
receiving the treatment the patient did in fact receive. A logistic regression model is usually used to calculate the
propensity of receiving a treatment of interest versus a comparator. For patients in the treatment group, the weight
is calculated as the inverse of the propensity score, whereas for patients in the comparator group, the weight is
calculated as the inverse of 1 minus the propensity score (i.e., the probability of not receiving the treatment). Thus,
the weight for a given patient j with propensity score pj is calculated as:

1/p j if the patient is a member of the treatment group

weight =

1/(1 − p j ) if the patient is a member of the comparator group

Once calculated, the weights determine the extent to which each patient contributes to the new pseudo-
population. For example, for a patient in the treatment group with pj = 0.25, the weight is 1/0.25 = 4, which
represents four units in the pseudo-population. For a patient in the comparator group with pj = 0.25, the weight is
(1/(1−0.25) = 4/3), which represents 4/3 units in the pseudo-population. After the pseudo-population has been
created, the balance of patient characteristics should be compared across the different groups using standardized
differences, as in the case for PSM. Following this, the outcomes between treatment groups are ready for comparative
assessment.

Two of the case studies presented in this review implemented IPTW techniques in their CER of OACs (Ta-
ble 1) [22,23]. In addition to performing PSM, Seeger and colleagues also performed IPTW analyses by re-weighting
the study population of dabigatran and warfarin users using the formula given above (1/pj for dabigatran and
1/(1 − pj) for warfarin) [23]. Larsen and colleagues, [25] on the other hand, used generalized boosted models
to re-weight the study population of apixaban, dabigatran, rivaroxaban and warfarin users. Generalized boosted
models can be used to calculate weights in the case when there are three or more treatment groups being compared
simultaneously [45], however, this method, and others that are based upon machine learning techniques, are beyond
the scope of explanation in this introductory review [46]. A simpler alternative, when there are three or more
treatment cohorts is to compute the propensity score using a multinomial logistic model with all treatment cohorts
(cohort #1, cohort #2, cohort #3, cohort #4) included in the model, using one cohort as the reference (i.e., cohort
#1). Each patient’s weight is equal to the inverse of the probability of receiving the treatment. The weight for a
given patient j with propensity score pj is calculated as:

weight = 1/p j

For example, for a patient with pj = 0.5 in cohort #2, the weight is 1/0.5 = 2, which represents two units in the
pseudo-population. For a patient with pj = 0.25 in cohort #3, the weight is 1/0.25 = 4, which represents four units
in the full pseudo-population.

A key benefit of IPTW is that all eligible patients can be analyzed. This can be particularly useful when the
study population is too small to afford to lose any treated patients who could not be paired with a comparator
through a matching process. From a conceptual standpoint, IPTW is somewhat more difficult to comprehend and
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Table 3. A side-by-side comparison of propensity score matching and inverse probability of treatment
weighting: assumptions, advantages and disadvantages.
Method Assumptions Pros Cons

PSM • No unmeasured confounding
• Positivity: every subject must have nonzero
probability to receive either treatment
• Correct model specification for propensity score
• Compare two cohorts in most cases

• Easier to understand and
communicate the data

• Excludes unmatched subjects who may differ
systematically from matched subjects
• Limit to independent pairwise comparison

IPTW • No unmeasured confounding
• Positivity: every subject must have nonzero
probability to receive either treatment
• Correct model specification for propensity score
• Compare two or more cohorts

• Keep all eligible subjects
• Can include more than two
comparisons

• Difficult to understand and communicate the
data
• Less intuitive
• Extreme weight issue

IPTW: Inverse probability of treatment weighting; PSM: Propensity score matching.

communicate. The question of what the ATE would be in the entire population, if the treatment were offered
to every member of the population, could be of interest to healthcare payers. However, oftentimes a treatment
is not suitable for all members of the population. Recall the example of comparing low-dose apixaban patients
with all warfarin patients, as some warfarin patients do not meet apixaban low dose criteria they are therefore not
good candidates for low-dose apixaban [36]. One methodological consideration for IPTW is the issue of extreme
weights. This can occur when a treated patient has an extremely low propensity score, and then a very large weight
is created. Large weights can increase the variability of the estimated treatment effect, leading to potentially biased
results. In order to address this, stabilized weights should be used, which trim or truncate weights to a defined
threshold [47]. Seeger and colleagues encountered the issue of extreme weights, when implementing the IPTW
method to compare outcomes among NVAF patients treated warfarin versus dabigatran in USA. A hazard ratio of
0.00 (0.00–0.56) for the risk of stroke and 0.08 (0.08–0.10) for the risk of major bleeding was obtained with IPTW,
contrasting with PSM estimates of 0.77 (0.54–1.09) and 0.75 (0.65–0.87) respectively. The IPTW analysis was
repeated after capping (truncating) the weights at a value of 4.0, resulting in IPTW estimates of 0.57 (0.46–0.71)
for the risk of stroke and 0.75 (0.69–0.82) for the risk of major bleeding, which were closer (but not identical)
to the PSM estimated results (0.77 [0.54–1.09] for stroke and 0.75 [0.65–0.87] for major bleeding, respectively).
Lastly, whereas PSM is restricted for pair-wise comparisons of one treatment against another, IPTW is feasible to
include more than two treatment groups for a comparison.

Summary
PSM and IPTW are increasingly used to address confounding by indication potentially arising in CER due to lack
of randomization in treatment assignment. These methods strive to emulate the properties of an RCT in creating
treatment and comparator groups with balanced distributions of patient characteristics. Both methods, while based
upon the propensity score, have different interpretations, which may be more or less suitable under different
scenarios. In the case where there are ample numbers of comparators available for matching to treated patients,
PSM offers a more transparent method, which is readily understood and easy to communicate. Furthermore, PSM
may also be more robust to misspecification of the propensity score than the IPTW method, where extreme weights
can bias the estimation of the treatment effect. On the other hand, IPTW has its advantages in retaining all eligible
patients in the analysis, which may be preferred if there are limitations in terms of sample size, as well as the ability
to include more than two treatment comparisons simultaneously. A side-by-side comparison of the two methods is
detailed in Table 3.

Conclusion
To complement RCT evidence, the comparative effectiveness and safety of the four DOACs (apixaban, dabigatran,
edoxaban and rivaroxaban) versus one another and against warfarin continue to be extensively researched in real-
world studies. With PSM and IPTW being increasingly used in CER of OACs, as methods to achieve balance
between treatment and comparator groups, this review provides an important introduction with applied examples
from the AF field to aid understanding of these methodologies. A stronger foundational basis should help researchers
and end users of CER of OACs correctly interpret, communicate and implement findings into AF-related treatment
decisions in clinical practice.
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Future perspective
As CER based on real-world data gains greater prominence in healthcare decision-making, it is crucial that decision-
makers are familiar with emerging methodologies used in CER to rigorously assess the strengths, limitations and
quality of the evidence in order to make informed decisions.

In the field of AF research, the comparative effectiveness of available OACs continues to be extensively researched
with PSM and IPTW being two increasingly applied statistical techniques. This review provides an introductory
guide describing these methods side-by-side to ensure that evidence from future CER studies of OACs are critically
assessed, carefully interpreted and appropriately acted upon.

Executive summary

• After decades of warfarin being the only oral anticoagulant (OAC) widely available for stroke prevention in atrial
fibrillation (AF), four direct OACs (apixaban, dabigatran, edoxaban and rivaroxaban) were approved after
demonstrating noninferior efficacy and safety versus warfarin in randomized controlled trials (RCTs).

• Comparative effectiveness research (CER) of OACs based upon real-world data provides complementary
information to the evidence provided by RCTs.

• In real-world studies, treatments are not prescribed at random, therefore confounding by indication bias may
arise in CER if there are inherent differences in the patients prescribed the two or more treatments being
compared.

• Propensity score matching (PSM) and inverse probability of treatment weighting (IPTW) are increasingly popular
methods used to address confounding by indication in real-world CER of OACs.

• This review was undertaken to describe the fundamentals of PSM and IPTW and presents applied examples to
assist researchers and end users of CER within the atrial fibrillation field of research in critically appraising and
interpreting study findings.

• Key methodological considerations -
◦ PSM and IPTW methods strive to emulate the properties of an RCT in creating treatment and comparator

groups with balanced distributions of patient characteristics.
◦ Propensity scores form the basis for both PSM and IPTW methods, however what differs is how propensity

scores are used to control for differences in characteristics of patients receiving the treatments being compared.
◦ PSM works by matching patients receiving the treatment of interest with patients receiving the comparator

treatment based on the estimated value of their propensity score, creating pairs of treatment and comparator
patients with a similar probability of receiving treatment.

◦ PSM estimates the average treatment effect for the treated, reflecting the effect of the treatment only among
those who were ultimately treated.

◦ In the IPTW method, weights are assigned to patients based on the inverse of their probability of receiving
treatment, as estimated by the propensity score, creating a new pseudo-study population where treatment
assignment is independent.

◦ IPTW estimates the average treatment effect, reflecting the effect of the treatment in the scenario that every
patient within the population was offered the treatment.

◦ Each method has its own practical advantages as well as limitations, which may be more or less suitable under
different scenarios such as the availability of treatment and comparator patients and number of treatments
being compared.

◦ PSM and IPTW may not always lead to the same study conclusions therefore results should be viewed with full
consideration of the technical differences in methodology and differences in the measurement and
interpretation of the treatment effect that each method provides.
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